Math 4300 - Homework # 5

Line segments and rays

- 1. In the Euclidean plane, let A = (-1, 2) and B = (3, 8).
 - (a) Draw an accurate picture of \overline{AB} .
 - (b) Draw an accurate picture of \overrightarrow{AB} .
 - (c) Draw an accurate picture of \overrightarrow{BA} .
- 2. In the hyperbolic plane, let A = (1, 2) and B = (1, 4).
 - (a) Draw an accurate picture of \overline{AB} .
 - (b) Draw an accurate picture of \overrightarrow{AB} .
 - (c) Draw an accurate picture of \overrightarrow{BA} .
- 3. In the hyperbolic plane, let A = (1, 2) and B = (3, 4).
 - (a) Draw an accurate picture of AB.
 - (b) Draw an accurate picture of \overrightarrow{AB} .
 - (c) Draw an accurate picture of \overrightarrow{BA} .
- 4. In the Eucliean plane, let P = (-2, -1), Q = (-2, 3), A = (0, 0), and B = (2, 1).

Find C on the ray \overrightarrow{AB} such that $\overrightarrow{AC} \simeq \overrightarrow{PQ}$. Draw a picture of everything.

- 5. In the hyperbolic plane, let P = (1,2), Q = (1,4), A = (0,2), and B = (1, √3).
 Find C on the ray AB such that AC ≃ PQ. Draw a picture of everything.
- 6. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let A and B be distinct points from \mathscr{P} . Prove the following:
 - (a) $\overline{AB} = \overline{BA}$
 - (b) $\overline{AB} \subseteq \overrightarrow{AB} \subseteq \overleftarrow{AB}$
 - (c) $\overline{AB} = \overline{AB} \cap \overline{BA}$
 - (d) $\overrightarrow{AB} = \overrightarrow{AB} \cup \overrightarrow{BA}$
- 7. (Segment Addition) Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let $A, B, C, P, Q, R \in \mathscr{P}$. Prove that if A - B - C, P - Q - R, $\overline{AB} \simeq \overline{PQ}$, and $\overline{BC} \simeq \overline{QR}$, then $\overline{AC} \simeq \overline{PR}$.
- 8. (Segment Subtraction) Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let $A, B, C, P, Q, R \in \mathscr{P}$. Prove that if A - B - C, P - Q - R, $\overline{AB} \simeq \overline{PQ}$, and $\overline{AC} \simeq \overline{PR}$, then $\overline{BC} \simeq \overline{QR}$.
- 9. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let $A, B, C, D \in \mathscr{P}$ with $A \neq B$ and $C \neq D$. Prove that:
 - (a) If $C \in \overrightarrow{AB}$ and $C \neq A$, then $\overrightarrow{AC} = \overrightarrow{AB}$.
 - (b) If $\overrightarrow{AB} = \overrightarrow{CD}$, then A = C.
- 10. In the Euclidean plane $\mathscr{E} = (\mathbb{R}^2, \mathscr{L}_E, d_E)$. Let $A, B \in \mathbb{R}^2$ with $A \neq B$.
 - (a) Prove that

$$\overline{AB} = \{ C \in \mathbb{R}^2 \mid C = A + t(B - A) \text{ for some } t \text{ with } 0 \le t \le 1 \}$$

(b) Prove that

$$\overrightarrow{AB} = \{ C \in \mathbb{R}^2 \mid C = A + t(B - A) \text{ for some } t \text{ with } 0 \le t \}$$

11. Consider the hyperbolic plane $\mathscr{H} = (\mathbb{H}, \mathscr{L}_H, d_H)$. Let $A = (x_1, y_1)$ and $B = (x_2, y_2)$ both be on the line $_cL_r$. Suppose that $x_1 < x_2$. Show that if C = (x, y) lies on the line $_cL_r$ and $x_1 < x < x_2$, then $C \in \overline{AB}$.