Math 4300 - Homework \# 5 Line segments and rays

1. In the Euclidean plane, let $A=(-1,2)$ and $B=(3,8)$.
(a) Draw an accurate picture of $\overline{A B}$.
(b) Draw an accurate picture of $\overrightarrow{A B}$.
(c) Draw an accurate picture of $\overrightarrow{B A}$.
2. In the hyperbolic plane, let $A=(1,2)$ and $B=(1,4)$.
(a) Draw an accurate picture of $\overline{A B}$.
(b) Draw an accurate picture of $\overrightarrow{A B}$.
(c) Draw an accurate picture of $\overrightarrow{B A}$.
3. In the hyperbolic plane, let $A=(1,2)$ and $B=(3,4)$.
(a) Draw an accurate picture of $\overline{A B}$.
(b) Draw an accurate picture of $\overrightarrow{A B}$.
(c) Draw an accurate picture of $\overrightarrow{B A}$.
4. In the Eucliean plane, let $P=(-2,-1), Q=(-2,3), A=(0,0)$, and $B=(2,1)$.
Find C on the ray $\overrightarrow{A B}$ such that $\overline{A C} \simeq \overline{P Q}$. Draw a picture of everything.
5. In the hyperbolic plane, let $P=(1,2), Q=(1,4), A=(0,2)$, and $B=(1, \sqrt{3})$.
Find C on the ray $\overrightarrow{A B}$ such that $\overline{A C} \simeq \overline{P Q}$. Draw a picture of everything.
6. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let A and B be distinct points from \mathscr{P}. Prove the following:
(a) $\overline{A B}=\overline{B A}$
(b) $\overline{A B} \subseteq \overrightarrow{A B} \subseteq \overleftrightarrow{A B}$
(c) $\overline{A B}=\overrightarrow{A B} \cap \overrightarrow{B A}$
(d) $\overleftrightarrow{A B}=\overrightarrow{A B} \cup \overrightarrow{B A}$
7. (Segment Addition) Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry.

Let $A, B, C, P, Q, R \in \mathscr{P}$. Prove that if $A-B-C, P-Q-R$, $\overline{A B} \simeq \overline{P Q}$, and $\overline{B C} \simeq \overline{Q R}$, then $\overline{A C} \simeq \overline{P R}$.
8. (Segment Subtraction) Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry.

Let $A, B, C, P, Q, R \in \mathscr{P}$. Prove that if $A-B-C, P-Q-R$, $\overline{A B} \simeq \overline{P Q}$, and $\overline{A C} \simeq \overline{P R}$, then $\overline{B C} \simeq \overline{Q R}$.
9. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let $A, B, C, D \in \mathscr{P}$ with $A \neq B$ and $C \neq D$. Prove that:
(a) If $C \in \overrightarrow{A B}$ and $C \neq A$, then $\overrightarrow{A C}=\overrightarrow{A B}$.
(b) If $\overrightarrow{A B}=\overrightarrow{C D}$, then $A=C$.
10. In the Euclidean plane $\mathscr{E}=\left(\mathbb{R}^{2}, \mathscr{L}_{E}, d_{E}\right)$. Let $A, B \in \mathbb{R}^{2}$ with $A \neq B$.
(a) Prove that

$$
\overline{A B}=\left\{C \in \mathbb{R}^{2} \mid C=A+t(B-A) \text { for some } t \text { with } 0 \leq t \leq 1\right\}
$$

(b) Prove that

$$
\overrightarrow{A B}=\left\{C \in \mathbb{R}^{2} \mid C=A+t(B-A) \text { for some } t \text { with } 0 \leq t\right\}
$$

11. Consider the hyperbolic plane $\mathscr{H}=\left(\mathbb{H}, \mathscr{L}_{H}, d_{H}\right)$. Let $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ both be on the line ${ }_{c} L_{r}$. Suppose that $x_{1}<x_{2}$. Show that if $C=(x, y)$ lies on the line ${ }_{c} L_{r}$ and $x_{1}<x<x_{2}$, then $C \in \overline{A B}$.
